数学建模获奖论文范文(精选3篇)

一世相伴论文网 2023-08-11 07:18

数学建模获奖论文篇1

全国大学生数学建模竞赛以辉煌的成绩即将迎来她的第17个年头,她已是当今培养大学生解决实际问题能力和创造精神的一种重要方法和途径,参加大学生数学建模竞赛已成为大学校园里的一个时尚。正因如此,为了进一步扩大竞赛活动的受益面,提高数学建模的水平,促进数学建模活动健康有序发展,笔者在认真研究大学生数学建模竞赛内容与形式的基础上,结合自己指导建模竞赛的经验及前参赛获奖选手的心得体会,对建模竞赛培训过程中的培训内容、方式方法等问题作了探索。

一、数学建模竞赛培训工作

(一)培训内容

1.建模基础知识、常用工具软件的使用。在培训过程中我们首先要使学生充分了解数学建模竞赛的意义及竞赛规则,学生只有在充分了解数学建模竞赛的意义及规则的前提下才能明确参加数学建模竞赛的目的;其次引导学生通过各种方法掌握建模必备的数学基础知识(如初等数学、高等数学等),向学生主要传授数学建模中常用的但学生尚未学过的方法,如图论方法、优化中若干方法、概率统计以及运筹学等方法。另外,在讲解计算机基本知识的基础上,针对建模特点,结合典型的建模题型,重点讲授一些实用数学软件(如Mathematica、Matlab、Lindo、Lingo、SPSS)的使用及一般性开发,尤其注意加强讲授同一数学模型可以用多个软件求解的问题。

2.建模的过程、方法。数学建模是一项非常具有创造性和挑战性的活动,不可能用一些条条框框规定出各种模型如何具体建立。但一般来说,建模主要涉及两个方面:第一,将实际问题转化为理论模型;第二,对理论模型进行计算和分析。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如下图1来表示。

为了使学生更快更好地了解建模过程、方法,我们可以借助图1所示对学生熟悉又感兴趣的一些模型(例如选取高等教育出版社2006年出版的[数学建模案例集]中的案例6:外语单词妙记法)进行剖析,让学生从中体验建模的过程、思想和方法。

3.常用算法的设计。建模与计算是数学模型的两大核心,当模型建立后,计算就成为解决问题的关键要素,而算法好坏将直接影响运算速度的快慢及答案的优劣。根据竞赛题型特点及前参赛获奖选手的心得体会,建议大家多用数学软件(Mathematica,Matlab,Maple,Lindo,Lingo,SPSS等)设计算法,这里列举常用的几种数学建模算法。

(1)蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法,通常使用Mathematica、Matlab软件实现)。(2)数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)。(3)线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)。(4)图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,通常使用Mathematica、Maple作为工具)。(5)动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中,通常使用Lingo软件实现)。(6)图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。

4.论文结构,写作特点和要求。答卷(论文)是竞赛活动成绩结晶的书面形式,是评定竞赛活动的成绩好坏、高低,获奖级别的惟一依据。因此,写好数学建模论文在竞赛活动中显得尤其重要,这也是参赛学生必须掌握的。为了使学生较好地掌握竞赛论文的撰写要领,我们的做法是:(1)要求同学们认真学习和掌握全国大学生数学建模竞赛组委会最新制定的论文格式要求且多阅读科技文献。(2)通过对历届建模竞赛的优秀论文(如以中国人民解放军信息工程学院李开锋、赵玉磊、黄玉慧2004年获全国一等奖论文:奥运场馆周边的MS网络设计方案为范例)进行剖析,总结出建模论文的一般结构及写作要点,让学生去学习体会和摸索。(3)提供几个具有一定代表性的实际建模问题让学生进行论文撰写练习。

(二)培训方式、方法

1.尽可能让不同专业、能力、素质方面不同的三名学生组成小组,以利学科交叉、优势互补、充分磨合,达成默契,形成集体合力。

2.建模的基本概念和方法以及建模过程中常用的数学方法教师以案例教学为主;合适的数学软件的基本用法以及历届赛题的研讨以学生讨论、实践为主、教师指导为辅。

3.有目的有计划地安排学生走出课堂到现实生活中实地考察,丰富实际问题的背景知识,引导学生学会收集数据和处理数据的方法,培养学生建立数学模型解决实际问题的能力。

4.在培训班上,我们让学生以3人一组的形式针对建模案例就如何进行分析处理、如何提出合理假设、如何建模型及如何求解等进行研究与讨论,并安排读书报告。使同学们在经过“学模型”到“应用模型”再到“创造模型”的递进阶梯式训练后建模能力得到不断提高。

5.为了检测培训的效果,一般我们都要按竞赛的题型要求出一题是连续型、另一题是离散型组织一二次模拟竞赛,要求各组学生在三天内独立完成模型的建立、求解与论文写作,并就自己的论文作报告,让学生在实践中提高自己的建模能力、临场应变能力和组织协调能力。教师针对学生模拟竞赛中暴露出来的数学知识及论文写作方面的薄弱环节,有重点地进行训练和强化。

数学建模获奖论文篇2

关键词 数学建模 独立学院 课程改革 实践能力

中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdks.2015.02.044

Independent College Mathematical Modeling Education Curriculum Reform

――Take College of Arts and Sciences, Yunnan Normal University as an example

LIU Ruijuan[1], YANG Bin[2]

( [1]College of Arts and Sciences, Yunnan Normal University, Kunming, Yunnan 650222;

[2]Yunnan Institute of Electronics Industry, Kunming, Yunnan 650031)

Abstract This article from the reality of Yunnan Normal University of Arts, discusses the characteristics of Mathematical Modeling Course and the creation of the significance of this course, and then analyzes the independent Institute of Mathematical Modeling Courses problems proposed curriculum reform and solve mathematical modeling ideas. By selecting the appropriate course materials and auxiliary teaching materials, teaching and the establishment of mathematical modeling contest guide the team to achieve classroom case discussions and presentations combine teaching mode, associated with the creation of mathematical modeling curriculum support programs, such as probability theory, mathematical analysis , operations research, graph theory and other courses, assessment methods diversified, respectively, classroom attendance, classroom discussion to answer the performance aspects of modeling large peacetime operations and final quality modeling work, modeling reply comprehensive assessment, in addition to organize students to participate actively in the network challenge and the National mathematical Contest in Modeling and other students, with remarkable results.

Key words mathematical modeling; independent college; curriculum reform; practical ability

数学建模课程是20世纪80年代初在我国理工科大学开设的一门重要的数学课程。由于数学建模过程几乎模拟了科学研究的全过程,因而对于培养大学生的科研能力与创新意识和应用数学能力具有特殊的作用。而数学建模的多媒体教学,作为一种现代化的教学手段,具有形象直观、信息量大、交互性强等优点,对于发挥学生的主体作用、促进学生主动学习和培养学生创新能力也非常有益。这些能力也正是我们大学数学素质教育所要努力追求的。

目前国内关于数学建模课程改革的研究论文虽然比较多,也有一定的成果,当时均处于探索阶段,并且从目前数学建模课程教学改革的相关文献可以看到,大部分这方面的研究都集中体现普通高校和研究型高校或者数学建模课程的改革方案和与能力培养方面的关系,然而,尽管不少普通大学和研究型大学都在大胆尝试建模课程体系改革,但针对独立学院实际的数学建模教学改革基本空白,对数学建模课程的具体化改革对象和成果展现等方面的研究更是少见。

云南师范大学文理学院建模课程开展时间较短,从内容到体系均有待完善,所以本文就云南师范大学文理学院的实际探讨数学建模课程的改革及其成效,从而达到促进建模的教学工作,提高教学质量,同时提高自身的素质水平。

1 在独立学院开设数学建模课程的意义

云南师范大学文理学院自办学以来,针对学生的缺点和不足,以新的视角,欣赏学生的特点,梳理学生的优势,客观评价学生,掌握学生的优势、优项,树立教学信心,以积极的态度开展教学工作。培养学生处理相关信息和大量数据的能力,在数学建模过程中,我们引导学生针对所研究问题进行收集、加工,处理和应用信息的能力。学会提炼有用信息,并恰当地运用信息,并学习使用计算机和相应的数学软件。

在建模过程中我们要求学生充分发挥想象力和动手能力,采用类比的方法把表面上完全不同的实际问题,用相似的数学模型去描述解决他们,逐步达到触类旁通的效果。

另外,因为数学建模课程主要涉及的都是现实生活中的实际问题,通过数学建模课程的学习和数学建模竞赛的参与,可以极好地锻炼学生的论文写作能力和创新能力,同时提升学生的参与意识,为以后的学习和工作打下良好的基础。所以在独立学院开设数学建模课程具有重要的意义。

2 云南师范大学文理学院数学建模课程的特点和存在的问题

2.1 云南师范大学文理学院数学建模课程的特点

(1)先修课程和应用课程较多。数学建模课程需要众多的先修基础数学课程和数学软件课程,如数学分析、运筹学、微分方程、概率论与数理统计、图论、计算方法、计算数学、解析几何,MATLAB,Mathematics,lingo等,我院信息工程学院在开设数学建模课程的前期或者同时开设上述相关课程,因为需要具备扎实的专业功底,才可能较好地学习数学建模课程。

(2)教学方式灵活多变。各大高校数学建模课程是基本是案例式教学,每个章节以例子来说明,如商人过河问题,交通流问题,减肥问题,旅游地的选择问题等等,均是和实际联系较为紧密的身边的问题,激发学生的学习兴趣。但是也有一些常见的建模方法可以类比推广,如层次分析法,灰色关联度分析法,时间序列法,排队论等,我们都是有针对性地选取教学内容以适应学生现有的知识结构和接受能力。教学方法上我们采用讲授法、探讨法、历年真题论文案例法(包括学生平时作业点评)等。

(3)教学设备手段先进。建模课程需要处理大量的数据,我院配备了先进的投影多媒体教室,并且开设了与建模相关的Matlab,Mathematica等数学软件。

(4)实用性强。数学建模课程的案例基本都来自实际问题,如人口、天气、干旱等的预测模型,优化模型,决策模型,控制模型等。这些模型的引入,让学生更加深刻地领会数学建模课程的实用性。

(5)课程较难学。数学建模课程涉及的领域广,知识面大。通的(交通流问题),医疗领域(看病排队问题)等,采用的各领域的知识较多,很多时候都是现学现用,需要很高的领会能力和接受能力,这对学生和教师要求都比较高。

2.2 云南师范大学文理学院数学建模课程存在的问题

本文作者从2011年开始讲授数学专业的数学建模课程,数学建模作为数学专业的专业基础课程,在教学过程中发现数学建模课程存在的问题。

(1)教材涉及面太广,如姜启源的[数学模型]教材是我国自开设建模课程以来比较权威的一本建模教材,很多高校都在使用,但是从初等模型、简单的优化模型、线性规划模型、微分方程模型到马氏链模型等共13章,而课程安排只有周4课时,教学时间上较为紧张;另外整本教材基本都是案例,内容多且涉及的数学建模方法很少,学生看着一本厚厚的教材,心里难免畏惧,而实际上并不能完全讲授;对于三本独立院校的学生来说,专业基础不是很扎实,教材一些内容较深,学习起来较为吃力。

(2)课堂教学基本以教师为中心,教师采用纯讲授的教学方法,学生很少参与,因而缺乏学习数学建模的兴趣与积极性,学生也怕学。

基于上述问题的存在,影响学生学习数学建模课程的积极性,并且我们要参与各类建模赛事,如果不及时进行教学改革,势必影响教学和学习效果,在建模竞赛中也难取得较好的成绩,虽然关于建模课程改革的课题和论文较多,但是紧扣我院实际的还基本空白,不利于应用型人才的培养,所以有必要对现有的数学建模课教学模式进行改革。

3 对云南师范大学文理学院数学建模课程改革尝试的思路

本文作者从2011年开始教授数学建模课程开始,就在实践中开始摸索适合云南师范大学文理学院的数学建模课程改革思路,经过几年的实际教学和竞赛指导,主要收获如下:

(1)主体教材辅助方法、软件教材进行教学。目前作者使用的姜启源编写的[数学模型]对于独立学院的学生来说这本教材内容太难、太多了。作者近年来除讲解教材的基本模型外,尝试对教材进行补充、重组和开发,具体方式有根据历年的全国建模竞赛的题目类型,有倾向性地进行教学安排,并插入历年建模真题和常用方法进行课堂讲授,同时插入一些实际问题让学生进行建模论文的写作,根据我院学生的数学基础和竞赛的实际(对历年的真题出现的题型和用到的方法出现的频率)对章节进行取舍。

(2)数学建模课程教学方法改革。由于数学建模课程要进行实战演练,在学期配备相应的建模大作业习题,如手机购买问题,地方人口问题,水资源短缺问题,气候干旱问题,网吧数量萎缩等实际问题,要求学生在指定的时间内进行数据收集,整理,分析处理并以论文形式展现研究成果,同时安排论文模拟答辩,锻炼学生的解决实际问题的能力。同时学院也积极聘请省级建模专家进行专题讲座,提高大家学习的积极性。

(3)数学建模课程教学竞赛团队。我院近年来连续积极组织学生参加各类官方、民间数学建模竞赛赛事。我院专门组建立了一支建模指导教师团队,除了学期必修外,在全国建模竞赛前的假期还专门组织学生进行赛前培训,教师负责制分专题讲授离散模型、连续模型、优化模型、微分模型、概率模型、统计回归模型和软件讲授、论文写作等,突出体现教师的专长,提高了课堂教学效率,增强了学生学习的积极性。

(4)开设与数学建模课程相关的软件课程。为了让学生更好地参与到数学建模中来,我们从大学一年级就有针对可开设数学软件和建模讲座。开设Mathematic,MATLAB,Lingo等软件选修课,进行数学的应用与建模能力的培养,提高学生数学建模能力,在运筹学等课程中,有意识地让学生进行作业的排版练习,如WORD,EXCEL等常用排版计算软件。

(5)通过积累建立数学建模课程学习资源。如本校学生历年的较优秀的参赛论文,平时作业

教师教案、课件等,数学建模优秀论文等学习环境和信息交互空间。另外,给学生身边实际的问题,如云南水资源短缺问题,干旱气候预测问题,地区人口预测问题,网吧问题等进行建模练习,让学生把数学建模课程与实际应用结合起来。

(6)课程考核形式多样化。本文作者通过课堂考勤,课堂回答问题,课堂讨论,平时作业,期末大作业,作业课堂答辩等多种方式结合的方法进行课程考核。根据问题的大小,由学生独立或组队完成实际问题,若完成得好在原有成绩的基础上获得“平时成绩加分” ,给出最后考核的分数,提高学生学习数学建模课程的积极性,从而提高学生的建模能力。

(7)积极组织学生参加全国大学生数学建模竞赛和各类网络建模赛事。截至目前为止,我们已经连续五年组织学生参加全国大学生数学建模竞赛,连续两年组织学生参加“认证杯”数学中国数学建模竞赛,成绩优良。并且由信息工程学院定期举办建模和软件讲座参与各类数学建模比赛,熟悉比赛流程,了解论文撰写过程,为每年九月的全国数学建模做准备。

4 建模课程改革初步成效体现

我校作为独立学院从2010年开始尝试开设数学建模课程,推动大学数学素质教育方面,进行了一些探索和实践,并同年开始组织学生参加全国数学建模竞赛和网络建模竞赛,成效显著。

首先,从竞赛获奖来看,2010年全国大学生数学建模竞赛中,4个参赛队分别荣获1个省级一等奖,占总奖项的25%;2个省级二等奖,占总奖项的50%;1个省级三等奖,占总奖项的25%,获奖率100%;

2011年全国大学生数学建模竞赛中,4个参赛队分别荣获1个省级一等奖,占总奖项的25%;2个省级二等奖,占总奖项的50%;1个省级三等奖,占总奖项的25%,获奖率100%;

由于从2012年开始,数学建模竞赛组委会对建模奖项做了限制调整,获奖比例仅为原来的50%,所以2012年全国数学建模竞赛指导的参赛队教练组15个参赛队其中荣获2个省级一等奖,1个省级二等奖,9个省级三等奖,获奖率为80%,其中省级一等奖占总奖项的16.7%,省级二等奖占总奖项的8.33%,省级三等奖占总奖项的75%。

2013年“认证杯”数学中国数学建模网络挑战赛2个队参赛,第一阶段两个参赛队均获云南最好成绩全国二等奖,第二阶段一个队荣获云南省唯一个全国一等奖,取得全球建模能力高级认证;另一个参赛队荣获全国三等奖,取得全球建模能力基础认证,获奖率100%。

2013年全国数学建模竞赛,26个参赛队参赛,其中荣获1个国家二等奖,2个省级一等奖,3个省级二等奖,4个省级三等奖的优异成绩,奖项水平首次冲入国家奖项,建模水平大幅度提高,其中全国二等奖占总奖项的10%,省级一等奖占总奖项的20%,省级二等奖占总奖项的30%,省级三等奖占总奖项的40%。

2014年全国数学建模竞赛,22个参赛队参赛,其中荣获2个国家二等奖,2个省级一等奖,4个省级二等奖,4个省级三等奖的优异成绩,奖项水平较上年建模水平大幅度提高,其中全国二等奖占总奖项的16.7%,省级一等奖占总奖项的16.7%,省级二等奖占总奖项的33.3%,省级三等奖占总奖项的33.3%。

可以看到从开设数学建模课程以来,我校的数学建模水平到目前稳步提升,很好地锻炼了学生的创新能力和动手能力,同时增强了学生学习的自信心和积极性,成效显著。其次,从综合能力来看,通过建模课程的改革,学生的应变能力和思维能力都获得了很大的提升。

参考文献

[1] 段璐灵.数学建模课程教学改革初探教育与职业,2013(5).

[2] 常青.数学建模教学的实践与思考.http://.cn/gzsxb/jszx/jxyj/201211/t20121113_1143732.htm.2014/06/13.

[3] 姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社,2003.

[4] 朱道元.从数学建模看新世纪的数学教改[D]新世纪数学学科发展与教学改革研讨会论文集.东南大学数学系,2000.

[5] 杨霞,倪科社,王学锋.积极开展数学实践教学活动培养学生创新意识与实践能力[J].大学数学,2010(A01).

[6] 张银龙,刘敏.创新人才的培养与数学建模意识的形成[J].长春金融高等专科学校学报,2008(2).

[7] 程国华.数学建模融入常微分方程教学的研究[J].科教文汇(下旬刊),2010(12).

数学建模获奖论文篇3

关键词:数学模型;竞赛指导;教学改革

作者简介:戴志锋(1979-),男,湖南双峰人,长沙理工大学数学与计算科学学院,讲师;张丽(1979-),女,湖南长沙人,长沙理工大学数学与计算科学学院,副教授。(湖南 长沙 410114)

基金项目:本文系湖南省科技厅基金项目(项目编号:2012FJ3006)、湖南省大学生创新实验项目、湖南省教改课题“‘数值数学’系列课程研究性教学的探索与实践”的研究成果。

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)20-0102-02

一、数学建模竞赛概述

全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2012年,来自全国33个省、市、自治区和香港与澳门特区及新加坡的1284所院校、21219个队(其中本科组17741队、专科组3478队)、63600多名大学生报名参加本项竞赛。“2013高教社杯全国大学生数学建模竞赛”赛题将于2013年9月13日上午8:00点~9月15日上午8:00点进行。其宗旨是:创新意识、团队精神、重在参与、公平竞争,其口号:一次参赛,终生受益。

竞赛题目一般来自于管理科学和工程技术等方面,经过适当简化而来的实际问题,近年来也有来自大学教师的科研课题。竞赛题目一般没有事先设定的标准答案,不要求参赛学生预先掌握深入的专门知识,只需要学过普通高校的数学课程,如:“高等数学”、“线性代数”、“概率统计”。题目一般具有较大的灵活性,供参赛学生发挥其聪明才智和创造能力。竞赛形式组委会规定三名大学生组成一队,参赛学生根据题目要求可以自由地收集、查阅资料,调查研究,使用计算机、互联网和任何软件,在三天时间内分工合作完成一篇包括模型假设、模型建立和模型求解、计算方法的设计和计算机实现、结果的检验和评价、模型的改进等方面的论文(即答卷)。竞赛评奖的主要标准为假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度。

二、赛前学习内容

1.建模基础知识、常用工具软件的使用

(1)掌握数学建模必备的基础知识(如线性代数、高等数学、概率统计等),还有数学建模竞赛中常用的但尚未学过的方法,如灰色预测、回归分析、曲线拟合等常用预测方法,运筹学中若干优化算法。

(2)针对数学建模特点,结合典型的问题,重点学习几种常用数学软件(MATLAB、Lindo、Lingo、SPSS)的使用,并且具备一般性开发能力, 尤其应注意同一数学模型,有时可以使用多个软件进行求解。

2.常见数学建模的过程及方法

数学建模竞赛是一项非常具有挑战性和创造性的活动,不一定用一些条条框框规定各种实际问题的模型具体如何建立。但一般来说,数学建模主要涉及两个方面:一是将实际问题转化为理论数学模型;二是对理论数学模型进行分析和计算。简而言之,就是建立数学模型来解决各种实际问题的过程。这个过程可以用如图1来表示。

3.数学建模常用算法的设计

建模与计算是数学模型的两大核心。当数学模型建立后,完成相关数学模型的计算就成为解决问题的关键,而所采用算法的好坏将直接影响运算速度的快慢,以及答案的优劣。根据近年来竞赛题型特点及以前参赛获奖学生的心得体会,建议多用数学软件如MATLAB、Lindo、Lingo、SPSS等来设计求解的算法,本文列举了几种常用的算法。

(1)参数估计、数据拟合、插值等常用数据处理算法。在数学建模比赛中,通常会遇到海量的数据需要处理,而处理数据的关键就在于正确使用这些算法,通常采用MATLAB作为运算工具。

(2)线性规划、整数规划、多目标规划、二次规划等优化类问题。数学建模竞赛大多数问题是最优化问题,很多时候这些问题可以用数学规划模型进行描述,通常使用Lindo、Lingo 软件求解。

(3)图论算法主要包括最短路、网络流、二分图等算法,如果涉及到图论的问题可以用这些方法进行求解。

(4)最优化理论的三大非经典算法:神经网络、模拟退火法、遗传算法。这些算法通常是用来解决一些较困难的最优化问题的,主要使用Lingo、MATLAB、SPSS软件来实现。

三、数学建模竞赛中经常出现的问题

在国家数学建模竞赛中常见如下问题:数学模型最好明确、合理、简洁,但是有些论文不给出明确的模型,只是根据赛题的情况用“凑”的方法给出结果,虽然结果大致是对的,但是没有一般性,不是数学建模的正确思路;有的论文过于简单,该交代的内容省略了,难以看懂;有的队罗列一系列假设或模型,又不作比较、评价,希望碰上“参考答案”或“评阅思路”,反而弄巧成拙;有的论文参考文献不全,或引用他人成果不作交代。

另外,吃透题意方面不足,没有抓住和解决主要问题;就事论事,形成数学模型的意识和能力欠缺;对所用方法一知半解,不管具体条件,套用现成的方法,导致错误;对结果的分析不够,怎样符合实际考虑不周;队员之间合作精神差,孤军奋战;依赖心理重,甚至违纪。以上情况都需要各参赛队引起注意,有则改之,无则加勉。

四、竞赛中应重视的问题

1.团队合作是能否获奖的关键

通常在数学建模竞赛时,三个队员的分工要明确,其中一个作为组长,也算是领军人物,主要是负责构建整个问题的框架,并提出有创意的想法,当然其他部分如论文写作、程序设计、计算等也要能参加;第二位是算手,主要进行算法设计及编程计算;最后一位是,主要工作在于论文的写作和润色上。好的论文要让评委一眼就能明了其中的意思,因此的工作也需要一定的技巧。当然,要想竞赛时达到这样的标准,需要三个队员在平时训练时多加练习。

2.合理安排竞赛过程中的时间

数学建模竞赛中时间分配很重要,分配不好有可能完不成竞赛论文,有的队伍把问题解答完了,但是发现没有时间进行写作,或者写的很差劲而不能获奖,因此要大致做好安排。一般前两天不要熬的太狠,晚上10:00点前要休息,最后一夜必须熬通宵,否则体力肯定跟不上。之前有些队伍,前两天劲头很足,晚上做到很晚才休息,但是到了第三天晚上就没有精力了,这样一般很难获奖。

3.摘要的撰写很重要

论文的摘要是整篇论文的门面。摘要首先可以强调一下所做问题的重要性和意义,但不要写废话,也不要完全照抄题目的一些话,应该直奔主题,主要写明自己是怎样分析问题,用什么方法解决问题,最重要的结论是什么。在中国的竞赛中,结论很重要,评委肯定会去和标准答案进行比较。如果结论正确一般能得奖,如果不正确,评委可能会继续往下看,也可能会扔在一边,但不写结论的话就一定不会得奖了,这一点和美国竞赛不同,因此要认真把重要结论写在摘要上,如果结论的数据太多,也可只写几个代表性的数据,注明其他数据见论文中何处。

4.论文写作也要规范

数学建模竞赛的论文有一个比较固定的模式。论文大致按照如下形式来写:摘要、问题重述、模型假设和符号说明、问题分析(建立、分析、求解模型)、模型检验、模型的优缺点评价、参考文献、附录等等。另外,在正文中也可以加入一些图和表,附录也可以贴一些算法流程图或比较大的结果或图表等等,近年来为了防止舞弊,组委会要求把算法的源程序也必须放在附录中。

五、结论

全国大学生数学建模竞赛对于大学生而言,是一个富有挑战的竞赛。它不但能培养大学生解决实际问题的能力,同时能培养其创造力、团队合作的能力,而这些能力将会成为参赛学生以后成功就业的重要推动力。可以说,一次参赛,终身受益。

参考文献:

[1]姜启源,谢金星,叶俊.数学建模[M].第4版.北京:高等教育出版社,2010.

[2]韩中庚.数学建模方法与应用[M].北京:高等教育出版社,2005.

[3]吴疆,陈瑛,等.现代教育技术教程[M].北京:人民邮电出版社,2005.

版权声明:本文为一世相伴论文网(www.14380.com)发表,未经许可,不得转载。