纳米材料论文篇1
研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。
1研究形状和趋势
纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。
纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米Cu的决体材料,硬度比粗晶Cu提高5倍;晶粒为7urn的Pd,屈服应力比粗晶Pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望,纳米金属间化合物FqsAJZCr室成果的转化,到目前为止,已形成了具有自主知识产权的几家纳米粉体产业,睦次鹦米氧化硅。氧化钛、氮化硅核区个文的易实他借个缈阳放宽在纳米添加功能陶瓷和结构陶瓷改性方面也取得了很好的效果。
根据纳米材料发展趋势以及它在对世纪高技术发展所占有的重要地位,世界发达国家的政府都在部署本来10~15年有关纳米科技研究规划。美国国家基金委员会(NSF)1998年把纳米功能材料的合成加工和应用作为重要基础研究项目向全国科技界招标;美国DARPA(国家先进技术研究部)的几个计划里也把纳米科技作为重要研究对象;日本近匕年来制定了各种计划用于纳米科技的研究,例如Ogala计划、ERATO计划和量子功能器件的基本原理和器件利用的研究计划,1997年,纳米科技投资1.28亿美元;德国科研技术部帮助联邦政府制定了1995年到2010年15年发展纳米科技的计划;英国政府出巨资资助纳米科技的研究;1997年西欧投资1.2亿美元。据1999年7月8日[自然]最新报道,纳米材料应用潜力引起美国白宫的注意;美国总统克林顿亲自过问纳米材料和纳米技术的研究,决定加大投资,今后3年经费资助从2.5亿美元增
加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。
2国际动态和发展战略
1999年7月8日[自然](400卷)重要消息题为“美国政府计划加大投资支持纳米技术的兴起”。在这篇文章里,报道了美国政府在3年内对纳米技术研究经费投入加倍,从2.5亿美元增加到5亿美元。克林顿总统明年2月将向国会提交支持纳米技术研究的议案请国会批准。为了加速美国纳米材料和技术的研究,白宫采取了临时紧急措施,把原1.97亿美元的资助强度提高到2.5亿美元。[美国商业周刊]8月19日报道,美国政府决定把纳米技术研究列人21世纪前10年前11个关键领域之一,[美国商业周刊]在掌握21世纪可能取得重要突破的3个领域中就包括了纳米技术领域(其它两个为生命科学和生物技术,从外星球获得能源)。美国白宫之所以在20世纪即将结束的关键时刻突然对纳米材料和技术如此重视,其原因有两个方面:一是德科学技术部1996年对2010年纳米技术的市场做了预测,估计能达到14400亿美元,美国试图在这样一个诱人的市场中占有相当大的份额。美国基础研究的负责人威廉姆斯说:纳米技术本来的应用远远超过计算机工业。美国白宫战略规划办公室还认为纳米材料是纳米技术最为重要的组成部分。在[自然]的报道中还特别提到美国已在纳米结构组装体系和高比表面纳米颗粒制备与合成方面领导世界的潮流,在纳米功能涂层设计改性及纳米材料在生物技术中的应用与欧共体并列世界第一,纳米尺寸度的元器件和纳米固体也要与日本分庭抗礼。1999年7月,美国加尼福尼亚大学洛杉矾分校与惠普公司合作研制成功100urn芯片,美国明尼苏达大学和普林
斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10-”bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。
最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。
面对这种挑战的形势,中国在这个领域的研究能不能继续保持第二阶梯的前列位置,能不能在下世纪前周年,在纳米材料和技术的市场中占有一定比例的份额,这是值得我们深思的重要问题。中国科学院在我国纳米材料研究占有极其重要的地位,在纳米粉体的合成、纳米金属和纳米陶瓷体材料的制备、纳米碳管定向生长和超长纳米碳管的合成、纳米同轴电缆的制备和合成、有序阵列纳米体系的设计和合成、新合成方法的创新等在国内外都做了有影响的工作。在[自然]上1篇,[科学]上4篇,影响因子在3以上的论文6篇,申请发明专利28项,已获发明专利7项,有5项专利获得实施,扶植了国内一些纳米产业,这些都为进一步工作奠定了基础。
为了使中国科学院在世纪之交乃至下一世纪在纳米材料和技术研究在国际上占有一席之地,在国际市场上占有一份额,从前瞻性、战略性、基础性来考虑应该成立中国科学院纳米材料和技术研究中心,建议北方成立一个以物质科学中心为基础的研究中心(包括金属研究所),在南方建立一个以合肥地区中国科学院固体物理所和中国科技大学为基础的研究中心,主要任务是以基础研究为主,做好基础研究与应用研究的衔接和成果的转化。
在富有挑战的对世纪,世界各国都对富有战略意义的纳米科技领域予以足够的重视,特别是发达国家都从战略的高度部署纳米材料和纳米科技的研究,目的是提高在未来10年乃至20年在国际中的竞争地位。从各国对纳米材料和纳米科技的部署来看,发展纳米材料和纳米科技的战略是:()以未来的经济振兴和国家实力的需求为目标,牵引纳米材料的基础研究、应用开发研究;(2)组织多学科的科技人员交叉创新,做到基础研究、应用研究并举,纳米科学、纳米技术并举,重视基础研究和应用研究的衔接,重视技术集成;(3)重视发展纳米材料和技术改造传统产品,提高高技术含量,同时部署纳米材料和纳米技术在环境、能源和信息等重要领域的应用,实现跨越式的发展。
3国内研究进展
我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介人,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。
目前,我国有60多个研究小组,有600多人从事纳米材料的基础和应用研究,其中,承担国家重大基础研究项目的和纳米材料研究工作开展比较早的单位有:中国科学院上海硅酸盐研究所、南京大学。中国科学院固体物理研究所、金属研究所、物理研究所、中国科技大学、中国科学院化学研究所、清华大学,还有吉林大学烹北大学、西安交通大学、天津大学。青岛化工学院、华东师范大学\华东理工大学、浙江大学、中科院大连化学物理研究所、长春应用化学
研究所、长春物理研究所、感光化学研究所等也相继开展了纳米材料的基础研究和应用研究。我国纳米材料基础研究在过去10年取得了令人瞩目的重要研究成果。已采用了多种物理、化学方法制备金属与合金(晶态、非晶态及纳米微晶)氧化物、氮化物、碳化物等化合物纳米粉体,建立了相应的设备,做到纳米微粒的尺寸可控,并制成了纳米薄膜和块材。在纳米材料的表征、团聚体的起因和消除、表面吸附和脱附、纳米复合微粒和粉体的制取等各个方面都有所创新,取得了重大的进展,成功地研制出致密度高、形状复杂、性能优越的纳米陶瓷;在世界上首次发现纳米氧化铝晶粒在拉伸疲劳中应力集中区出现超塑性形变;在颗粒膜的巨磁电阻效应、磁光效应和自旋波共振等方面做出了创新性的成果;在国际上首次发现纳米类钙钛矿化合物微粒的磁嫡变超过金属Gd;设计和制备了纳米复合氧化物新体系,它们的中红外波段吸收率可达92%,在红外保暖纤维得到了应用;发展了非晶完全晶化制备纳米合金的新方法;发现全致密纳米合金中的反常Hall-Petch效应。
近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。一是大面积定向碳管阵列合成:利用化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,孔径基本一致,约20urn,长度约100pm,纳米管阵列面积达到3mmX3mm。其定向排列程度高,碳纳米管之间间距为100pm。这种大面积定向纳米碳管阵列,在平板显示的场发射阴极等方面有着重要应用前景。这方面的文章发表在1996年的美国[科学]杂志上。二是超长纳米碳管制备:首次大批量地制备出长度为2~3mm的超长定向碳纳米管列阵。这种超长碳纳米管比现有碳纳米管的长度提高1~2个数量级。该项成果已发表于1998年8月出版的英国[自然]杂志上。英国[金融时报]以“碳纳米管进入长的阶段”为题介绍了有关长纳米管的工作。三是氮化嫁纳米棒制备:首次利用碳纳米管作模板成功地制备出直径为3~40urn、长度达微米量级的发蓝光氮化像一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一。四是硅衬底上碳纳米管阵列研制成功,推进碳纳米管在场发射平面和纳米器件方面的应用。五是唯一维纳米丝和纳米电缆:应用溶胶一凝胶与碳热还原相结合的新方法,首次合成了碳化或(TaC)纳米丝外包覆绝缘体SIOZ和TaC纳米丝外包覆石墨的纳米电缆,以及以S江纳米丝为芯的纳米电缆,当前在国际上仅少数研究组能合成这种材料。该成果研究论文在瑞典召开的1998年第四届国际纳米会议宣读后,许多外国科学家给予高度评价。六是用苯热法制备纳米氮化像微晶;发现了非水溶剂热合成技术,首次在300℃左右制成粒度达30urn的氮化锌微晶。还用苯合成制备氮化铬(CrN)、磷化钻(COZP)和硫化锑(Sb。S。)纳米微晶,在1997年的[科学]杂志上。七是用催化热解法制成纳米金刚石;在高压釜中用中温(70℃)催化热解法使四氯化碳和钠反应制备出金刚石纳米粉,在1998年的[科学]杂志上。美国[化学与工程新闻]杂志还发表题为“稻草变黄金?从四氯化碳(CC14)制成金刚石”~文,予以高度评价。
我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,中科院上海硅酸盐研究所、南京大学、中科院固体物理所、中科院金属所、物理所、中国科技大学、清华大学和中科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才作出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的中坚力量。
在过去10年,我国已建立了多种物理和化学方法制备纳米材料,研制了气体蒸发、磁控溅射、激光诱导CVD、等离子加热气相合成等10多台制备纳米材料的装置,发展了化学共沉淀、溶胶一凝胶、微乳液水热、非水溶剂合成和超临界液相合成制备包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料的方法,研制了性能优良的多种纳米复合材料。近年来,根据国际纳米材料研究的发展趋势,建立和发展了制备纳米结构(如纳米有序阵列体系、介孔组装体系、MCM-41等)组装体系的多种方法,特别是自组装与分子自组装、模板合成、碳热还原、液滴外延生长、介孔内延生长等也积累了丰富的经验,已成功地制备出多种准一维纳米材料和纳米组装体系。这些方法为进一步研究纳米结构和准一纳米材料的物性,推进它们在纳米结构器件的应用奠定了良好的基础。纳米材料和纳米结构的评价手段基本齐全,达到了国际90年代末的先进水平。
综上所述,“八五”期间我国在纳米材料研究上获得了一批创新性的成果,形成了一支高水平的科研队伍,基础研究在国际上占有一席之地,应用开发研究也出现了新局面,为我国纳米材料研究的继续发展奠定了基础。10年来,我国科技工作者在国内外学术刊物上共发表纳米材料和纳米结构的论文2400多篇,在国际上排名第五位,其中纳米碳管和纳米团簇在1998年度欧洲文献情报交流会上德国马普学会固体所一篇研究报告中报道中国科技工作者已超过德国,在国际排名第三位,在国际历次召开的有关纳米材料和纳米结构的国际会议上,我国纳米材料科技工作者共做邀请报告24次。到目前为止,纳米材料研究获得国家自然科学三等奖1项,国家发明奖2项;院部级自然科学一、二等奖3项,发明一、H等奖3项,科技进步Th等奖1项;申请专利79项,其中发明专利占50%,已正式授权的发明专利6项,已实现成果转化的发明专利6项。最近几年,我国纳米科技工作者在国际上发表了一些有影响的学术论文,引起了国际同行的关注和称赞。在[自然]和[科学]杂志上发表有关纳米材料和纳米结构制备方面的论文6篇,影响因子在6以上的学术论文(Phys.Rev.Lett,J.AIn.Chem.Soc.)近20篇,影响因子在3以上的31篇,被SCI和EI收录的文章占整个的59%。1998年6月在瑞典斯特哥尔摩召开的国际第四届纳米材料会议上,对中国纳米材料研究给予了很高评价,指出这几年来中国在纳米材料制备方面取得了激动人心的成果,在大会总结中选择了8个纳米材料研究式作取得了比较好的国家在闭幕式上进行介绍,中国是在美国、日本、德国、瑞典之后进行了大会发言。
纳米材料论文篇2
自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理研究的前沿热点是在80年代中期以后。从研究的内涵和特点大致可划分为三个阶段。
第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。
第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。
第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。国际上,把这类材料称为纳米组装材料体系或者称为纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝和管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系,基保包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。纳米颗粒、丝、管可以是有序或无序地排列。
如果说第一阶段和第二阶段的研究在某种程度上带有一定的随机性,那么这一阶段研究的特点更强调人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性。著名诺贝尔奖金获得者,美国物理学家费曼曾预言“如果有一天人们能按照自己的意愿排列原子和分子…,那将创造什么样的奇迹”。就像目前用STM操纵原子一样,人工地把纳米微粒整齐排列就是实现费曼预言,创造新奇迹的起点。美国加利福尼亚大学洛伦兹伯克力国家实验室的科学家在[自然]杂志上,指出纳米尺度的图案材料是现代材料化学和物理学的重要前沿课题。可见,纳米结构的组装体系很可能成为纳米材料研究的前沿主导方向。
二、纳米材料研究的特点
1、纳米材料研究的内涵不断扩大
第一阶段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料研究对象又涉及到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶),例如气凝胶孔隙率高于90%,孔径大小为纳米级,这就导致孔隙间的材料实际上是纳米尺度的微粒或丝,这种纳米结构为嵌镶、组装纳米微粒提供一个三维空间。纳米管的出现,丰富了纳米材料研究的内涵,为合成组装纳米材料提供了新的机遇。
2.纳米材料的概念不断拓宽
1994年以前,纳米结构材料仅仅包括纳米微粒及其形成的纳米块体、纳米薄膜,现在纳米结构的材料的含意还包括纳米组装体系,该体系除了包含纳米微粒实体的组元,还包括支撑它们的具有纳米尺度的空间的基体,因此,纳米结构材料内涵变得丰富多彩。
3.纳米材料的应用成为人们关注的热点
经过第一阶段和第二阶段研究,人们已经发现纳米材料所具备的不同于常规材料的新特性,对传统工业和常规产品会产生重要的影响。日本、美国和西欧都相继把实验室的成果转化为规模生产,据不完全统计,国际上已有20多个纳米材料公司经营粉体生产线,其中陶瓷纳米粉体对常规陶瓷和高技术陶瓷的改性、纳米功能涂层的制备技术和涂层工艺、纳米添加功能油漆涂料的研究、纳米添加塑料改性以及纳米材料在环保、能源、医药等领域的应用,磨料、釉料以及纸张和纤维填料的纳米化研究也相继展开。纳米材料及其相关的产品从1994年开始已陆续进入市场,所创造的经济效益以20%速度增长。
三、纳米材料的发展趋势
1.加强控制工程的研究
在纳米材料制备科学和技术研究方面一个重要的趋势是加强控制工程的研究,这包括颗粒尺寸、形状、表面、微结构的控制。由于纳米颗粒的小尺寸效应、表面效应和量子尺寸效应都同时在起作用,它们对材料某一种性能的贡献大小、强弱往往很难区分,是有利的作用,还是不利的作用更难以判断,这不但给某一现象的解释带来困难,同时也给设计新型纳米结构带来很大的困难。如何控制这些效应对纳米材料性能的影响,如何控制一种效应的影响而引出另一种效应的影响,这都是控制工程研究亟待解决的问题。国际上近一两年来,纳米材料控制工程的研究主要有以下几个方面:一是纳米颗粒的表面改性,通过纳米微粒的表面做异性物质和表面的修饰可以改变表面带电状态、表面结构和粗糙度;二是通过纳米微粒在多孔基体中的分布状态(连续分布还是孤立分布)来控制量子尺寸效应和渗流效应;三是通过设计纳米丝、管等的阵列体系(包括有序阵列和无序阵列)来获得所需要的特性。
2.近年来引人注目的几具新动向
(1)纳米组装体系蓝绿光的研究出现新的苗头。日本Nippon钢铁公司闪电化学阳极腐蚀方法获得6H多孔碳化硅,发现了蓝绿光发光强度比6H碳化硅晶体高100倍:多孔硅在制备过程中经紫外辐照或氧化也发蓝绿光;含有Dy和Al的SiO2气凝胶在390nm波长光激发下发射极强的蓝绿光,比多孔Si的最强红光还高出1倍多,250nm波长光激发出极强的蓝光。
(2)巨电导的发现。美国霍普金斯大学的科学家在SiO2一Au的颗粒膜上观察到极强的高电导现象,当金颗粒的体积百分比达到某临界值时,电导增加了14个数量级;纳米氧化镁铟薄膜经氢离子注入后,电导增加8个数量级;
(3)颗粒膜巨磁电阻尚有潜力。1992年,纳米颗粒膜巨磁电阻发现以来,一直引起人们的关注,美国布朗大学的科学家最近在4K的温度下,几个特斯拉的磁场,R/R上升到50%,目前这一领域研究追求的目标是提高工作温度,降低磁场。如果在室温和零点几特斯拉磁场下,颗粒膜巨磁阻能达到10%,那么就将接近适用的使用目标。目前国际上科学家们正在这一领域努力。
纳米材料论文篇3
1.1基于稀土上转换纳米材料的检测稀土上转换纳米材料被近红外光(980nm)激发发射出可见光,可以消除活体内检测时细胞和组织中自发荧光的干扰[25,36].Zijlmans等人在1999年首次利用上转换荧光材料实现了人类前列腺组织中特异性抗原的检测[20].随后,基于上转换纳米材料的荧光生物探针被用于各种分析物的生物检测.例如,Tanke课题组[21]使用上转换荧光材料来进行生物检测,将400nmY2O2S:Yb/Er上转换纳米颗粒与DNA偶联制备出DNA探针,检出限为1ng/L,比传统的花青染料探针灵敏度提高了4倍.Nied-bala等人[37]利用侧向免疫层析检测法,同时检测出唾液中安非他明、脱氧麻黄碱、苯环己哌啶和麻醉剂等物质.之后,Wang等人提出一种基于上转换纳米材料的夹心杂交检测方法并实现了对DNA的超灵敏检测[38].2013年,陈学元课题组[39]报道了一种新颖的上转换生物检测方法,用Yb3+,Er3+共同掺杂到上转换纳米颗粒作为生物探针进行溶液中痕量分析物(如抗生物素蛋白和肿瘤标记物等)的检测.多功能酶标仪可以收集上转换纳米颗粒近红外光激发发射出的可见光信号,量化分析物中的生物分子浓度.例如,利用Ln3+掺杂的上转换纳米颗粒的发光强度和抗生物素蛋白浓度成正比例关系检测抗生物素蛋白,检出限为90pmol•L-1.相同的结果也从尿激酶纤维蛋白溶酶原激活剂受体、癌胚抗原和α-胎蛋白中获得,其检出限范围为40~100pmol•L-1.本课题组[40]将核酸适配体与上转换纳米材料相结合,利用分子识别引入了一种检测潜指纹的新方法,如图1所示.通过水热法合成的上转换纳米颗粒表面包裹着一层油酸,油酸不仅起到表面活性剂的作用,还能够通过配体交换将聚丙烯酸连接到上转换纳米颗粒上,得到的上转换纳米颗粒既可溶于水又能够通过羧基将生物活性分子修饰到颗粒表面.将经氨基修饰的溶菌酶核酸适配体(lysozyme-bindingaptamer,LBA)连接到修饰了羧基的上转换颗粒(upconversionnanoparticles,UCNPs)的表面,形成核酸适配体功能化的稀土上转换纳米颗粒(简称UCNPs-LBA).UCNPs-LBA通过核酸适配体高效地与指纹中溶菌酶特异性结合并在近红外光的激发下发出可见光,指纹图像清晰呈现并被配有微焦镜头的单反相机记录.这种通过分子识别的潜指纹检测方法可以实现不同表面和不同人的潜指纹检测.潜指纹中除了包含有本身的分泌物外,还包含一些外源化学物质,如可卡因.将核酸适配体换成可卡因的适配体同样可以实现潜指纹的检测,该方法对可卡因的检出限可达0.5μg.该检测方法有望为刑事侦查提供有力的信息。
1.2基于荧光共振能量转移的检测Kuningas等人[23]首次提出了基于上转换纳米材料的荧光共振能量转移分析技术(upconversionFRETAssay,UC-FRET或UC-LRET),并通过使用抗生蛋白链菌素修饰的上转换纳米材料作为能量供体,生物素化的藻胆蛋白作为能量受体实现了生物素的高灵敏检测.此后,基于UC-FRET的分析方法得到了快速发展,例如:李富友课题组[41]构建了一种高灵敏度的DNA纳米传感器:用表面修饰有DNA捕获探针的NaYF4:Yb/Er上转换纳米颗粒作为能量供体,用标记有罗丹明的短链互补DNA序列作为能量受体构建UC-FRET结构,目标DNA通过链置换反应与DNA捕获探针进行互补配对从而破坏UC-FRET结构实现对目标DNA的检测,目标DNA的浓度与发射光的强度比存在线性关系,测量的目标DNA浓度极低,检测范围为10~60nmol•L-1.同样,Zhang等人[42]也报道了基于寡核苷酸修饰上转换纳米颗粒的生物传感器用来检测DNA,检出限低至到1.3nmol•L-1.贵金属纳米颗粒如纳米金等具有表面等离子体共振性质和较大的消光系数,将这些材料与上转换纳米材料相结合可以降低检测时的背景荧光干扰并提高检测灵敏度,因此贵金属纳米颗粒也常常被作为能量受体用于UC-FRET生物检测中[43].例如,Wang等人[44]报道了基于NaYF4:Yb/Er和金纳米颗粒的UC-FRET生物传感器用来检测抗生物素蛋白,检出限低至0.5nmol•L-1.最近,Deng等人[45]提出一种在溶液和活细胞中快速检测谷胱甘肽的新方法,该方法的基本原理是,谷胱甘肽能抑制上转换纳米颗粒表面的二氧化锰纳米片对上转换发光的猝灭作用.根据材料本身独特的电学和热学性能,石墨烯、氧化石墨烯和碳纳米颗粒也在基于UC-FRET的生物检测中被广泛用作能量猝灭剂。
2生物成像领域内的应用
2.1体内深层组织的荧光成像稀土上转换纳米材料所用到的激发光源(980nm)在生物组织中有很强的穿透能力、不会引起生物体自发荧光干扰而且对生物组织几乎无损伤,所以稀土上转换纳米材料是各种生物组织或生物体成像分析的理想荧光标记材料.Zhang课题组[49]使用PEI包裹的NaYF4:Yb/Er纳米颗粒首次实现了动物体成像,证明了稀土上转换纳米材料相比于量子点在体内深层组织成像中的优势.为了进一步增加稀土上转换发射光的组织穿透深度从而提高成像灵敏度,需要调节上转换发射光谱到红光区(600~700nm).这一波长范围内生物组织对发射光的散射和吸收均较小,且自发荧光干扰也很小,对深层组织成像至关重要.赵宇亮课题组[22]报道了Mn掺杂的发单色红光的NaYF4:Yb/Er上转换纳米材料用于活体成像,成像深度可延伸至15mm.Prasad课题组[50]也报道了一种新的体内成像方法,该方法利用NaYF4:Yb/Tm上转换纳米材料发出的近红外光(800nm)作为检测信号,在小鼠体内成像实验中获得了高对比度的荧光图像.在随后用Yb/Tm共掺杂的上转换颗粒进行小鼠全身荧光成像的实验中,实现了20mm的光穿透深度[51,52].此外,聚丙烯酸修饰的上转换纳米颗粒(PAA-NaLuF4:Yb/Tm)也被报道作为光学生物学探针用于正常黑鼠的体内荧光成像,而且该探针在兔子体内成像实验中也能获得很高的信噪比[53].多路复用成像是识别不同生物体最有效的方法之一,随着稀土上转换纳米材料合成方法的不断发展,可以通过调节掺杂元素的种类和含量在紫外到近红外光谱区内对稀土上转换纳米颗粒的发射光谱进行精确调节,并可以使其呈现多个发射峰.Yu等人[54]首次使用NaYF4:Yb/Er/La纳米棒实现了活体内多色成像.Cheng等人[55]将具有不同发射光谱的3种上转换纳米颗粒经皮下注射进入到小鼠体内,通过区分光谱反褶积实现小鼠的多色成像.荧光共振能量转移是另一种调节上转换纳米颗粒发射多色光的方法,基于该方法的基本成像原理是,利用近红外光激发上转换纳米颗粒并利用其发射光来激发颗粒表面的有机染料或量子点,使其发射出不同波长的荧光从而实现生物成像.刘庄课题组[56]利用有机染料和聚乙二醇(PEG)包覆的上转换纳米颗粒之间的疏水作用力将染料吸附在颗粒表面来调节复合材料在可见光区的发射光谱,并将该复合材料用于生物体多色成像体系中.
2.2多模态成像单模态成像技术通常只能反映生物体内单一的信息,因此,为了获得更多的生物体内相关信息,多模态成像技术应运而生.近年来,以稀土上转换纳米材料为基础的多模态成像技术得到了快速发展,例如,上转换荧光成像(upconversionimaging,UCL)与磁共振成像(magneticresonanceimaging,MRI)、电子计算机X射线断层扫描(computedtomography,CT)、正电子发射断层成像(positronemissioncomputedtomography,PET)和单光子发射计算机断层成像(single-photonemissioncompu-tedtomography,SPECT)等其他模态成像技术相结合的多模态成像技术已经取得了长足发展并在生物成像中发挥着越来越重要的作用[57,58].
2.2.1双模态成像当前的研究热点之一是将上转换荧光成像与MRI相结合构建双模态成像探针并探究其在生物医学领域内的应用.众所周知,荧光成像为生物体内成像提供了高的灵敏度,但它的激发光对生物组织的穿透深度较浅.相比于荧光成像,MRI为体内成像提供了良好的空间分辨率.但由于其灵敏度有限,所以通过结合上转换荧光成像和磁共振成像的优势,可以获得同时具备高灵敏度、高空间分辨率和较强激发光组织穿透深度的双模态成像探针.近年来,一些基于稀土上转换纳米材料的双模态成像探针制备方法已有报道.第一种制备方法是分子的功能化,即将Gd配合物等磁共振成像造影剂修饰在上转换纳米颗粒表面来构建UCL/MRI双模态成像复合探针.例如,Li等人[57]报报道了一种核壳结构的UCL/MRI纳米颗粒探针,该探针以上转换纳米颗粒为核并将Gd配合物担载在二氧化硅壳层中.第二种制备方法是通过连续生长或者包覆的方法实现其他磁性材料与上转换纳米材料的复合.超顺磁性氧化铁纳米粒子(SPIONS)由于其良好的磁性和生物相容性获美国FDA批准为商用磁共振成像造影剂;目前,SPIONS包覆的上转换纳米颗粒作为双模态成像探针的雏形技术已有报道.Xia等人[58]制备了NaYF4:Yb/Tm@FexOy纳米核壳结构的复合材料,并将其用于生物体T2加权MRI和UCL双模态淋巴管成像的造影剂.然而,上转换纳米颗粒的发光强度在这个核壳结构中将会逐渐减小,这是因为Fe3O4壳层既吸收发射光也吸收近红外激发光.为解决这一问题需要进一步制备反相的核壳纳米结构,所以Zhu等人又合成Fe3O4纳米颗粒为核而上转换纳米颗粒为壳层的纳米结构来避免Fe3O4对发射光和激发光的吸收[59].刘庄课题组[60,61]用层层自组装的方法制备了UCNPs-SIONPs纳米复合材料成像探针.该探针以上转换纳米颗粒为核,颗粒外包覆一层超薄氧化铁纳米颗粒,然后在最外层包裹一层金颗粒.该纳米复合材料可用于UCL/MRI双模态生物成像并在体内和体外进行定向的癌症光热治疗,还可用于干细胞的示踪和操控.这些结果表明UCNPs-SIONPs作为新型的多功能成像探针有潜力应用于体内转移性细胞的示踪和操控[62].然而,实现稀土上转换纳米材料与其他磁性材料结构和功能的复合非常困难并且会导致一些副作用(例如Fe3O4可能会猝灭稀土上转换材料的发射光).就这一点而言,含有Gd的材料(Gd2O3,GdPO4,GdF3,NaGdF4等)与稀土上转换材料有良好的相容性.将含有Gd的纳米壳层包裹在稀土上转换纳米颗粒表面来制备的复合纳米材料同时具有光学和磁学两种性质,可以用于多功能生物体系中[27~35].例如,赵宇亮课题组[32]成功合成了形貌可调的Ln掺杂的Gd2O3纳米颗粒,该颗粒具有多种颜色的上转换荧光成像和磁共振成像能力.Zhou等人[63]报道了基于Yb/Er(Tm)共掺杂NaGdF4纳米颗粒的小动物UCL/MRI双模态成像体系.第三种制备方法是将有磁性的离子掺杂到稀土上转换纳米颗粒中.例如,赵宇亮课题组[22]报道了NaYF4:Yb/Er纳米晶体掺杂Mn离子后表现出上转换荧光发射和磁性双重性质.Zeng等人[64]报道了NaLuF4纳米晶体掺杂Gd/Yb/Er三种元素离子的体系,该纳米晶体不仅具有近红外发射的性质还在室温下具有顺磁性,经生物分子功能化的NaLuF4上转换纳米颗粒有望应用于体内和体外的双模成像中(UCL/MRI).将UCL和SPECT相结合也是一种备受关注的双模态成像技术,SPECT成像在临床诊断中常用18F作为放射性同位素标记物,由于常用的上转换纳米颗粒的组成元素中含有氟,所以可以在合成上转换纳米颗粒时将F元素换成其带有放射性的同位素18F来获得UCL/SPECT双模成像性质.最近,Sun等人[65]报道了用含有18F的NaYF4:Yb/Tm纳米颗粒进行小动物全身UCL/SPECT双模成像,该纳米颗粒不仅可以在老鼠体内获得高灵敏度的图像,而且在大型动物体内也可以获得.然而,18F较短的半衰期(1.829h)限制了其在生物体内长时间成像中的应用,所以研究者们又进一步合成了长半衰期153Sm(46.3h)掺杂的NaLuF4:Yb/Tm纳米颗粒并将其用于生物体长周期UCL/SPECT双模成像[66];而且由于153Sm发射出中等能量的β射线,对生物体损伤较小,因此该成像探针更加适合用于长时间的生物成像.
2.2.2多模态成像最近,PET/MRI/UCL或着CT/MRI/UCL三模态成像受到人们越来越多的关注,将3种成像技术结合不仅可以提高成像的清晰度还可以提高诊断效率.例如,CT是根据人体不同组织对X射线的吸收和透过率不同而获得被检查部位的3D高分辨图像的非侵入性分子成像技术;然而,由于CT和MRI成像不仅平面分辨率有限而且不适用于细胞水平的成像,而UCL成像却具有极高的灵敏度和空间分辨率可以广泛地应用于生物医学研究领域的细胞和组织成像.因此,通过结合UCL,CT和MRI三种成像模式可以实现从细胞到活体超灵敏、多层面的分子成像.Liu等人[67]报道Gd2O3:Yb/Er的多功能探针可以在小动物体内进行UCL,MRI和CT多模态成像来提供诊断,治疗以及疾病的相关信息.Xia等人[68]制备了Gd配合物掺杂的NaLuF4上转换纳米颗粒可以在小动物体内进行UCL,MRI和CT多模态成像.比如Fe3O4@NaLuF4:Yb/Er(Tm)和NaYF4:Yb/Er/Tm@NaGdF4@TaOx纳米核壳结构也同样可以作为MRI,CT,UCL三模态成像的生物探针.李富友课题组制备了18F标记的NaYF4:Gd/Yb/Er纳米颗粒[69],该颗粒具有放射性,磁性和荧光性可以作为多功能的纳米探针进行体外荧光成像和MRI/PET活体成像.而Os(II)复合体包裹的NaYF4:Yb/Tm纳米复合物也已证明可以进行三模态成像[70].
3疾病治疗领域内的应用
稀土上转换纳米颗粒也可以应用到疾病治疗领域中,比如可以作为载体来运输小分子抗癌药物和治疗性多肽等物质,也可以根据其成像性质来实时、简单、有效地追踪药物输送路径并了解药物释放的效率.下文主要介绍稀土上转换纳米颗粒在作为药物和基因载体方面的发展现状并总结稀土上转换纳米颗粒在光动力学治疗和光热治疗的应用.3.1药物和基因输送近年来,由于中空和介孔结构有巨大的孔容量所以常用作理想的药物载体.例如,赵宇亮课题小组[33]将布洛芬(IBU)包载到带有介孔壳的Gd2O3:Yb/Er中空纳米颗粒中.另外,Yb(OH)CO3@Yb-PO4:Er和NaREF4:Yb/Er(RE=Yb,Lu,Y)纳米颗粒也可以通过包载药物进行药物释放诱导癌细胞死亡[71,72].核壳结构Fe3O4@nSiO2@mSiO2@NaYF4:Yb/Er(Tm)[73](mSiO2=介孔硅),NaYF4:Yb/Er@硅纤维[74],NaYF4:Yb/Er@nSiO2@mSiO2[75]和Gd2O3:Er@nSiO2@mSiO2[76]等纳米复合物也已证实可以作为药物载体并且可控制药物的释放.但是,由于介孔硅层的厚度很难控制到10nm以内,所以介孔二氧化硅包裹的上转换纳米颗粒由于介孔硅的包裹使得纳米颗粒的尺寸增加.除了硅封装,还可以利用药物分子与上转换纳米颗粒表面功能分子的相互作用来实现药物运输,该方法可以避免增加纳米颗粒的尺寸.Wang等人[77]合成了多色光谱的上转换纳米颗粒,并通过静电吸附作用利用PEG化的上转换纳米颗粒实现抗癌药物阿霉素(DOX)的包载与释放的行为研究.首先将PEG与叶酸(FA)共价交联形成新的化合物,然后表面修饰到油酸包裹的上转换颗粒表面,这种颗粒能够对叶酸受体有靶向效果,并进行了KB细胞与HeLa细胞对比,研究发现FA-PEG-UCNPs能够很快进入KB细胞而不能在相同的时间内进入HeLa细胞.值得注意的是,DOX在低的pH值条件下,具有更好水溶性,低pH值条件加速了DOX中-NH2基团的质子化,从而导致释放出更多的DOX分子.根据pH值进行药物释放的纳米复合颗粒对临床癌症治疗是具有实际意义的,因为肿瘤的细胞外组织、细胞内的溶酶体和核内体的微环境均是酸性的.通过利用稀土上转换纳米颗粒近红外激发紫外光发射的性质来控制包裹药物的笼状化合物进行药物释放和基因表达,避免了直接使用紫外光照射的组织穿透能力低和光毒性的缺点.目前,这种近红外激发紫外光发射的上转换纳米颗粒在智能药物领域的研究得到发展.Zhang课题组[78]通过包裹可光解的质粒DNA/siRNA分子到介孔氧化硅包覆的NaYF4:Yb/Tm上转换纳米颗粒的多孔硅中,该方法不仅提高了生物相容性且增加了载药能力.在近红外光激发下,上转换纳米颗粒发射紫外光刺激质粒DNA或者siRNA进行基因表达调控或者基因下调.Yang等人[79]首次证明通过共价键将阳离子可光解连接器与硅包覆的上转换纳米颗粒连接起来,在980nm激光辐射下,上转换的紫外光可以使光敏连接器分开,因此可以有效地释放siRNA并控制其在活体细胞中靶基因的表达.同时,这一方法可以应用于其他的笼状化合物比如说NO[80],羧酸[81],二硝基苯[33]和荧光素[82].另外可光解药物释放系统也可以应用于基于上转换纳米颗粒的其他光响应系统,例如,Yan等人[83]通过使用光敏水凝胶包裹的上转换纳米颗粒在近红外光激发发射紫外光的情况下可以引发溶胶-凝胶转变并且可以释放大的、无活性的生物大分子(比如说蛋白质)到溶液系统中.Liu等人[84]报道了基于偶氮苯基团(azo)修饰介孔氧化硅包裹的NaYF4:Yb/Tm@NaYF4上转换纳米颗粒在近红外光激发下,发射的紫外光可以引发偶氮分子从反式异构体转换到顺时异构体,以一种可控的反式异构体来引发药物释放.3.2光动力治疗光动力治疗(photodynamictherapy,PDT)采用光激活化学物质(光敏剂),从而产生单线态氧(1O2),最终导致癌细胞死亡.用于激活光敏剂的激发光通常在可见-近红外波段,由于其穿透能力有限,所以将光敏剂包裹到上转换纳米颗粒上来提高其组织穿透能力.当纳米微粒被980nm的近红外光激发时发出可见光然后可见光激发光敏剂释放1O2最后杀死癌细胞.Chen等人将光敏剂亚甲基蓝(MB)附着到表面包裹有二氧化硅的NaYF4:Er/Yb/Gd上转换纳米颗粒上,发现了显著的红光猝灭现象[85].Zhang课题组将光敏剂酞菁锌(ZnPc)包裹到NaYF4:Yb/Er-PEI上转换纳米颗粒或者NaYF4:Yb/Er@mSiO2上转换纳米颗粒[17,86,87],由于ZnPc的吸收峰(~670nm)与NaYF4:Yb/Er纳米颗粒的红色发射峰相重叠,所以在近红外光的照射下ZnPc产生了大量的1O2杀死癌细胞,增加了癌症的治疗效果.之后,Idris等人制备了与两种不同光敏剂即ZnPc和MC540(部花青540)吸收波长相匹配的上转换纳米材料,从而实现利用单一波长光源同时激发两种光敏剂的治疗方法[34],与单一负载的光敏剂相比,UCNs-ZnPc-MC540产生了大量的单线态氧并且减慢了荷瘤小鼠的肿瘤生长速率.另外,为了提高药物的靶向能力,将具有靶向作用的叶酸和抗体连接到上转换纳米颗粒上,使其既可以进行靶向光动力学治疗又拥有了更多的抗肿瘤效应[17,37,86].刘庄课题组报道了通过非共价键修饰的方式将Ce6光敏剂装载到NaYF4:Yb/Er@PEG上转换纳米颗粒上[77,88],构建了治疗和成像双功能的上转换纳米材料,通过构建4T1乳腺肿瘤Balb/c鼠动物模型,以瘤内注射的方式将UCNP-Ce6给药到瘤内,再经过980nm的激光照射,首次实现了利用基于上转换纳米粒子的光动力治疗在生物体应用,形成的光动力学治疗纳米复合物显示了更深的组织穿透深度并且提高了体内肿瘤的抑制效果.其他的光敏剂分子,包括MC540[37],四苯基卟啉(TPP)[89]和(4-羧基苯基)卟吩(TCPP)[77]也可以包裹到NaYF4:Yb/Er用做光动力学治疗药物.另外,将NaYF4:Yb/Er@NaGdF4或者NaYF4:Yb/Er/Gd应用于能量转换材料,可以实现MRI/UCL成像和光动力学疗法相结合[85,90].3.3光热治疗光热疗法(photothermaltherapy,PTT)是通过激光照射(近红外光)改变癌细胞所处的环境,将光能转换为热能,达到一定温度,可以诱发细胞内蛋白质的变性,破坏细胞膜,导致癌细胞的热消融.与化学疗法和外科手术相比较,PTT具有更少的侵入性,因此在癌症治疗中吸引了人们更多的关注.刘庄课题组制备了NaYF4:Yb/Er@Fe3O4@Au-PEG多功能纳米颗粒不仅可以用于MRI/UCL来进行成像还可以进行具有磁性的靶向光热癌症治[61].在动物实验中,通过静脉注射NaYF4:Yb/Er@Fe3O4@Au-PEG纳米颗粒到荷瘤小鼠体内,不仅肿瘤成像信号加强而且当使用808nm近红外光照射肿瘤时可以使肿瘤细胞热消融.另外,Dong等人将合成的NaYF4:Yb/Er@Ag纳米颗粒与HepG2细胞一起培养[91],在980nm近红外光下照射8~20min中,HepG2细胞的存活率从65.05%下降至4.62%,显示出光热治疗方法的疗效.
4结论与展望
本论文总结了目前稀土上转换纳米材料在生物医学领域即生物检测,生物成像和疾病治疗的应用.稀土上转换纳米材料因其可以避免生物体自体荧光的干扰,从而大大提高生物检测的灵敏度;将不同的成像方式所需要的探针集合在一种上转换发光纳米颗粒上,实现灵敏度更高和准确度更高的多模态成像;将上转换纳米颗粒表面功能化之后,将其作为靶向药物来进行癌症治疗和基因输送.多功能的稀土上转换纳米颗粒在生物检测,多模态成像和以最小的副作用进行药物输送和治疗的领域得到广泛的发展,但目前该技术仍然面对诸多挑战.第一,稀土上转换纳米材料在生物医学领域应用中的安全性问题,通常细胞毒性实验或急性毒性研究结果表明稀土上转换纳米颗粒具有较低的生物毒性.但这些数据并没有表明稀土上转换纳米颗粒的慢性毒性,因此缺乏对稀土上转换纳米颗粒毒性全面系统的研究,阻碍了其在生物医学领域中的应用.第二,镧系元素掺杂的上转换纳米颗粒有潜力应用到新型医学科学领域,比如治疗诊断学,个性化的治疗,多模态医学等,但还需要做很多研究工作.第三,稀土上转换作为智能药物输送系统的发展只在初级阶段,建立一个有效的、可靠的、光激活的、以上转换纳米颗粒为基础的药物输送系统还存在很多挑战,比如:载药能力的问题、在没有到达靶细胞前药物的零释放等问题.第四,大多数上转换纳米颗粒是用980nm激光照射,然而水在980nm激光下有强烈的吸收,这将导致组织发热,所以需要制备一种既可以被小于980nm的近红外光激发又不影响其组织穿透能力的上转换纳米颗粒.制备可以实现多模态成像的功能性上转换荧光纳米材料是目前荧光探针材料的一种发展趋势;开发可以准确控制药物释放的上转换荧光纳米探针来达到活体准确的药物传输,并且可以实现光动力学和光热力学的治疗;制备多功能的上转换荧光探针,使其在细胞水平实现对活体进行整体分析、检测以及治疗等均是未来重要的发展方向.随着这些问题的解决,稀土上转换纳米材料在生物医学领域将会发挥更重要的作用。
版权声明:本文为一世相伴论文网(www.14380.com)发表,未经许可,不得转载。
- 上一篇:论文可行性分析范文(精选3篇)
- 下一篇:信息检索论文范文(精选3篇)